
Angela Dai (TU Munich)
(In person)
Title: Towards Commodity 3D Content Creation
Abstract: With the increasing availability of high quality imaging and even depth imaging now available as commodity sensors, comes the potential to democratize 3D content creation. State-of-the-art reconstruction results from commodity RGB and RGB-D sensors have achieved impressive tracking, but reconstructions remain far from usable in practical applications such as mixed reality or content creation, since they do not match the high quality of artist-modeled 3D graphics content: models remain incomplete, unsegmented, and with low-quality texturing. In this talk, we will address these challenges: I will present a self-supervised approach to learn effective geometric priors from limited real-world 3D data, then discuss object-level understanding of from a single image, followed by realistic 3D texturing from real-world image observations. This will help to enable a closer step towards commodity 3D content creation.
Bio: Angela Dai is an Assistant Professor at the Technical University of Munich where she leads the 3D AI group. Prof. Dai's research focuses on understanding how the 3D world around us can be modeled and semantically understood. Previously, she received her PhD in computer science from Stanford in 2018 and her BSE in computer science from Princeton in 2013. Her research has been recognized through a Eurographics Young Researcher Award, ZDB Junior Research Group Award, an ACM SIGGRAPH Outstanding Doctoral Dissertation Honorable Mention, as well as a Stanford Graduate Fellowship.
